Page last updated at 08:18 GMT, Thursday, 30 July 2009 09:18 UK

Jellyfish help to stir the ocean

By Victoria Gill
Science reporter, BBC News


By dispersing dye in front of swimming jellyfish, the team was able to look at their effect on ocean turblulence (Footage courtesy of K.Katija/J.Dabiri )

Jellyfish help to stir up the ocean as they move, researchers have found.

Using a green dye, scientists showed how the animals' umbrella-shaped bodies were a key factor in this mixing.

The distribution of heat, nutrients and chemicals helps maintain the marine environment and has an important influence on global climate.

Reporting in the journal Nature, the researchers said that marine animals of many shapes and sizes contributed to ocean turbulence.

Charles Darwin, grandson of the famous British naturalist, first discovered that animals stir up the oceans more than 50 years ago.

The influence of this "biogenic" or "Darwinian" mixing on the ocean environment has been under debate since then.

The wind and tides play a big part in mixing the oceans, but this study suggests that the role of biogenic mixing could be more significant than previously thought.

The research showed how small creatures - as well as very large sea mammals - create turbulence.

"This is important because the other proposed mechanism was simply that large animals stirred up the water as they swam," explained lead author John Dabiri from the California Institute of Technology (Caltech).

He and his colleague Kakani Katija showed exactly how jellyfish, which were between one and 10cm in diameter, "dragged water around" as they moved, demonstrating the effect by squirting a dye in front of the creatures.

Jellyfish and researcher (Monty Graham)
The team had to dive with the jellyfish to demonstrate the effect

But, Dr Dabiri explained, the jellyfish were unlikely to be the "primary ocean mixers".

"Crustaceans - like copepods and krill - are likely the primary biogenic mixers, because there are so many of them," he explained. "We used jellyfish here, because of their uniform shape - and because they were relatively easy to study."

The principle behind the effect, Dr Dabiri explained, was aerodynamics. "When the animal is at depth, it will carry some of the colder, deeper water with it as it migrates upwards," he said.

"The shape of the animal is important, because the more streamlined it is, the less of a disturbance it causes. So a bullet-shaped animal will carry less water with it than a flatter, saucer-shaped animal."

Jonathan Sharples, principal researcher from the UK's Proudman Oceanographic Laboratory told BBC News that this mechanism was likely to be important in specific areas where there was a high density of marine life.

"In warmer surface water there are virtually no nutrients, and the transport of nutrients from the bottom water is very important for the single-cell plants that live there," he said.

"But much of the open ocean is like desert," he added, "and the density of these animals is unlikely to be sufficient (to cause mixing)."

The next step, Dr Dabiri said, was to find out where in the ocean, the phenomenon of biogenic mixing has the biggest effect.

Print Sponsor

Ice oceans 'are not poles apart'
15 Feb 09 |  Science & Environment
Ocean climate fix remains afloat
29 Jan 09 |  Science & Environment
What is ocean acidification?
10 Mar 09 |  Science & Environment
Polar ocean 'soaking up less CO2'
17 May 07 |  Science & Environment

The BBC is not responsible for the content of external internet sites

Has China's housing bubble burst?
How the world's oldest clove tree defied an empire
Why Royal Ballet principal Sergei Polunin quit


Sign in

BBC navigation

Copyright © 2019 BBC. The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.

Americas Africa Europe Middle East South Asia Asia Pacific