Page last updated at 01:04 GMT, Wednesday, 3 December 2008

X-ray machine's brilliant future

By Jonathan Amos
Science reporter, BBC News

ESRF ring (P.Ginter/ESRF)

One of the "crown jewels" in Europe's science programme is to get a 177m-euro (150m) polish.

The European Light Source (ESRF) reveals the precise positions of atoms and molecules in different materials using extremely bright X-rays.

Researchers exploit the information to develop a host of products - from new drugs to safer car components.

Now this facility, based in Grenoble, France, is to get a major upgrade that will take seven years to complete.

"The ESRF is working well and is in pretty good shape," said Bill Stirling, its director general.

"Our analysis, though, is that science is changing and is making big steps in ways that we can only follow if we also make big steps, by reinvesting in new instrumentation, the kind of scientific instruments that nobody else has, that we will have to develop; and these instruments will be very exciting and challenging to build but they will also be expensive."

The European Synchrotron Radiation Facility, to give it its formal name, is an enormous machine. It produces high-energy X-rays by firing electrons around an 850m-circumference, magnetised ring.

As the super-fast electrons bend around the ring, they lose a small part of their energy in the form X-rays which are then funnelled down "beamlines" to penetrate targets positioned in experimental cabins, or "hutches".

The applications for synchrotron science are legion.

X-rays can pierce opaque fossil tree resin (amber) to reveal remarkable detail


This year, the BBC has reported on how the ESRF has been used to picture ancient insects trapped inside fossilised tree resin; has gained insights into new alloys that could be used to build lighter jet engines; and has worked out how fruits decay, enabling industry to better store its produce.

EUROPEAN LIGHT SOURCE

info-graphic

Electrons are fired into a linac, or straight accelerator. They're boosted in a small ring before entering the storage ring. The superfast particles are corralled by a train of magnets. Energy lost by turning electrons emerges as intense light (X-rays).

info-graphic

The 850m-circumference ring has 32 magnet clusters, or cells. Electrons turned by plain magnets produce 'standard' X-rays. Particles 'wiggled' at undulator magnets emit stronger X-rays. X-rays can't turn with electrons and head straight down beamlines.

info-graphic

Experiment 'hutches' receive the most intense X-rays in Europe. The light probes materials on the atomic and molecular scale. Robots can place many samples in the beam for rapid science. ESRF data leads to new materials, drugs, electronics, etc.

1 of 3

"X-rays are very useful because they tell us what's going on inside materials," explained Professor Stirling.

"We know that from our visits to the hospital and to the dentist. But in the laboratory context, X-rays can tell us where the atoms are, the molecules, what they are made of, how they're moving and how they behave together."

Synchrotrons have become the must-have science facility in recent years. In 2007, new world-class machines became operational in France and in the UK, with two more planned to open in Germany (2009) and Spain (2010).

But the European Light Source is at the head of the field by virtue of its size and the pioneering techniques it is developing.

The upgrade is intended to maintain its flagship status in Europe, and protect its global competiveness in the context of the enhancements also planned for the top US (the Advanced Photon Source) and Japanese (The Super Photon Ring) machines.

"We've had a lead in synchrotron technology over the last 10 years and it is something Europe should hang on to," said upgrade programme project leader, Ed Mitchell.

KEY EUROPEAN SCIENCE CENTRE
ESRF convention was signed in 1998; started its science in 1994
Each year, about 4,000 scientists make 6,500 visits to the ESRF
They do about 1,500 experiments that result in about 1,500 papers
The Science and Nature journals carry one virtually every week
The upgrade will mean better resolution; specialised detectors
Experiments will be done faster and repeated many more times
Different instruments will take many measurements at once

The upgrade will improve the resolution and stability of the Grenoble X-ray beams. Advanced instrumentation and detectors will open up new research opportunities. Robotics will speed throughput. New computing systems will allow scientists to undertake their research remotely.

One key area the ESRF wants to develop is nano-science - those fields of research concerned with length scales of just billionths of a metre (nanometres).

Some materials will display unusual electrical, optical and other properties because of the precise arrangement of their constituent atoms or molecules. The upgraded machine would make it easier to see these properties in action.

"We see a great future for very, very tiny X-ray beams - X-ray beams which are minute even compared to a human hair," said Professor Stirling.

"These X-ray beams will be able to see small elements within some electronic device or the individual parts of a living cell."

Other refinements should enable the machine to follow chemical reactions as they happen; and probe how materials behave under extremes of pressure or temperature, or in intense magnetic fields.

3D structure of a cell membrane protein (G. Schertler)
Structural biology aims to understand the shape - and therefore the function - of the big molecules in our bodies

Considerable research effort today at the ESRF goes into trying to resolve the structure of molecules for the development of new drugs.

"It's an old saying, but 'form equals function'. If we know the shape of a protein, you can figure out how it works," said Gordon Leonard from the ESRF's Joint Structural Biology Group.

The inside of an experiment cabin, or hutch

It is a difficult task because to get useable data, all of these molecules must be prepared in a crystalline form before being loaded into the machine. It is a time-consuming and often imperfect state to achieve.

And the targets in this area of research are getting ever more difficult to pin down - such as the complicated membrane proteins that will control how a drug molecule will get into a cell.

One route around this for the upgrade will simply be to throw numbers at the problem.

"Because people are starting to work on more complex systems, the quality of the crystals won't be as good as for the individual proteins," explained Dr Leonard.

"One of the things we need going forward is a massive screening facility so that scientists can bring hundreds of crystals of the same thing and we can screen, and screen, and screen to find the best one."

We can't write today exactly everything we want to do in the future. It's impossible. If we could do that we would be billionaires for foreseeing science
Ed Mitchell, ESRF upgrade project leader

The upgrade to the ESRF is one of the major projects listed on a roadmap of research infrastructures that Europe feels it needs to fulfil its scientific goals over the next 20 years.

These range from high-performance computing systems through to a plan to construct the world's most advanced polar ice-breaker.

Also in that list is the first of the next-generation light sources that will evolve alongside an upgraded ESRF - a giant X-ray laser, to be built in Germany, whose peak brilliance should be a billion times greater even than the Grenoble machine.

"We can't write today exactly everything we want to do in the future," said Dr Mitchell. "It's impossible. If we could do that we would be billionaires for foreseeing science.

"We have a set of ideas to start off the ESRF upgrade. Down the road, we'll have to have another look, to build in more ideas as the priorities become apparent."

TOOLS TO DO BIG SCIENCE IN EUROPE
Aurora Borealis (AWI)
The upgrade fits into a European infrastructures plan that includes an ice ship


Jonathan.Amos-INTERNET@bbc.co.uk

Print Sponsor


SEE ALSO
'Science for peace' project needs cash
11 Nov 08 |  Science & Environment
'Super-microscope' opens at Isis
11 Nov 08 |  Science & Environment
Apples beat pears on crunch issue
11 Jul 08 |  Science & Environment
'Space metals' aid perfection quest
09 May 08 |  Science & Environment
Ancient serpent shows its leg
10 Apr 08 |  Science & Environment
Secret 'dino bugs' revealed
01 Apr 08 |  Science & Environment
Green light for flash fantastic
05 Jun 07 |  Science & Environment

RELATED INTERNET LINKS
The BBC is not responsible for the content of external internet sites


FEATURES, VIEWS, ANALYSIS
Has China's housing bubble burst?
How the world's oldest clove tree defied an empire
Why Royal Ballet principal Sergei Polunin quit

BBC navigation

BBC © 2014 The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.

Americas Africa Europe Middle East South Asia Asia Pacific