Page last updated at 13:35 GMT, Monday, 19 May 2008 14:35 UK

Laser heats up the fusion future

By Jonathan Fildes
Science and technology reporter, BBC News

Vulcan mirror
The UK plans to build an even more powerful facility called Hiper

The world's most powerful laser has heated matter to a truly sweltering 10 million Celsius.

The Vulcan laser concentrated power equivalent to 100 times the world's electricity production into a spot just a few millionths of a metre across.

Writing in the New Journal of Physics, scientists said they could create the conditions for fractions of a second.

The experiments demonstrated concepts which could be key to building a future nuclear fusion reactor.

The UK has proposed an even more powerful laser facility, known as Hiper (High Power laser Energy Research), which will study the feasibility of laser fusion as a potential future energy source.

"Hiper is a proposed, very large-scale facility and so we have to check that our understanding is correct," explained Professor Peter Norreys of the Rutherford Appleton Laboratory (RAL) in Oxfordshire where the experiments took place.

Extreme condition

Nuclear fusion is looked on as a panacea in a world that demands ever increasing amounts of energy.

The fuel for the process is deuterium and tritium, two heavier forms of hydrogen. Deuterium is commonly found in seawater, whilst tritium can be made from lithium in a so-called "breeder" reactor.

LASER FUSION

info-graphic

1. Powerful lasers irradiate a fuel capsule causing the outer layer to rapidly expand.

info-graphic

2. The fuel capsule's core increases in density, converging at the tip of a gold cone.

info-graphic

3. An intense ignition laser is fired into the gold cone producing energetic electrons.

info-graphic

4. Electrons bombard the fuel raising its temperature to 100 million Celsius, initiating fusion.

1 of 4

When these isotopes are combined at high temperatures, a small amount of mass is lost and a colossal amount of energy is released.

The process naturally occurs in the core of the Sun where huge gravitational pressure allows this to happen at temperatures of around 10 million Celsius.

At the much lower pressures on Earth, temperatures to produce fusion would need to be much higher - above 100 million Celsius.

Ultra powerful lasers, such as Hiper, have been proposed as one method for reaching these extreme conditions, although many remain sceptical about the technique.

The project has been drawn up to capitalise on another project at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in California.

NIF is expected to demonstrate energy production from laser driven fusion between 2010 and 2012.

If proven, the technology could rival the current favoured technique for initiating fusion which uses superconducting magnets to contain and fuse the hydrogen nuclei.

This technique will be used in the 10bn-euro Iter reactor currently being built in Cadarache, southern France.

Energy boost

The new work laid some of the foundations for Hiper.

In the experiments, the Vulcan laser focused one petawatt (1,000 trillion watts) of power into a spot about one tenth of the width of a human hair.

Laser

The pulse lasted for one picosecond (one trillionth of a second), heating the target to 10 million Celsius, one tenth of that required for nuclear fusion.

However, even at these relatively balmy temperatures, the conditions were equivalent to these found in supernova explosions.

A special high-speed camera probed the fleeting moment.

"We wanted to understand the basic interaction of matter with these laser pulses," Professor Norreys told BBC News.

Specifically, the team wanted to understand how much energy was transferred from the laser to the target.

"Efficient coupling of the laser energy to the target is crucial for fast ignition fusion, and is one of the main questions on which the design of┐ Hiper depends," said Dr Jonathan Davies from Instituto Superior Technico, Lisbon, Portugal, who also took part in the study.




SEE ALSO
Laser vision fuels energy future
06 Jun 07 |  Science/Nature
Diamond bid to contain sun's heat
26 Apr 07 |  Edinburgh, East and Fife
France gets nuclear fusion plant
28 Jun 05 |  Science/Nature
Q&A: Nuclear fusion reactor
21 Nov 06 |  Science/Nature

RELATED INTERNET LINKS
The BBC is not responsible for the content of external internet sites


FEATURES, VIEWS, ANALYSIS
Has China's housing bubble burst?
How the world's oldest clove tree defied an empire
Why Royal Ballet principal Sergei Polunin quit

BBC navigation

BBC © 2013 The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.

Americas Africa Europe Middle East South Asia Asia Pacific